
UNIVERSITÉ GRENOBLE - ALPES

NANO2017 DEMA

SP 1—Interactive Debugging

Délivrable D3 :
Intégration d’OpenMP 4.0

Kevin Pouget, Jean-François Méhaut
UJF-LIG/CORSE

January 19, 2016

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 2/33

Contents

1 Introduction 5

2 Task Debugging in Cooperation with Temanejo 7
2.1 OpenMP Task Programming Model . 7
2.2 Temanejo Task Debugger . 8

2.2.1 Property Mechanism . 9
2.2.2 Task Execution Control . 9
2.2.3 Ayudame Helper Library . 9

2.3 Interactions between Temanejo and mcGDB 10
2.3.1 Ayudame preload . 10
2.3.2 mcGDB commands . 11

2.4 mcGDB+Temanejo Task Debugging . 12
2.4.1 Task State and Properties . 12
2.4.2 Task Execution Control . 14

3 Discussions about mcGDB Implementation 15
3.1 Supporting Multiple OpenMP Environment 15
3.2 Aspect-Oriented Programming for interaction Modules 16
3.3 Performance Micro-Benchmarking . 18

3.3.1 Native GDB with Python Code . 18
3.3.2 mcGDB OpenMP . 20

4 Conclusion 23

References 25

A Appendix 27
A.1 Access to Source-Code . 28

A.1.1 Download . 28
A.1.2 Installation . 29
A.1.3 Compile libmcgdb-omp . 30
A.1.4 OpenMP environment . 30
A.1.5 Test, Benchmark and Documentation 31

3

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

A.1.6 Ayudame/Temanejo . 32
A.2 OpenMP Task Example . 33

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 4/33

Chapter 1

Introduction

In this document, we detail the work we carried out for the deliverable D3 of NANO

2017 DEMA / Interactive Debugging sub-project.
OpenMP [2] is the specification1 of a runtime environment for shared memory

parallel programming, based on the fork-join programming model. This specification
is used more and more often to exploit the computing power of multi-core processors.

OpenMP provides an advanced methodology to develop parallel application,
however it does not provide any help for the debugging part of the development
process. Worth, it even confuses tools such as source-level interactive debuggers.
Indeed, these tools often work natively only at binary and language level and miss
in important part of the high-level execution semantic. In the case of OpenMP, the
confusion is actually one step above, because it relies on compiler transformations.
This means that the code executed around OpenMP pragmas is not strictly equivalent
to the one written in the application source files.

Our prior work [7] introduced the concept of “programming-model centric”
source-level interactive debugging as an extension of the traditional language-level
interactive debugging. The idea was to integrate into debuggers the notion of “pro-
gramming models”, as abstract machines running over the physical ones. These
abstract machines, implemented by runtime libraries and programming frameworks,
provide the high-level primitives required for the implementation of today’s parallel
applications.

The idea of programming model is to implement in debuggers functionalities
related to these abstract machines. In particular, they should 1/ provide a struc-
tural representation of the architecture, 2/ monitor the dynamic behaviors such as
communications, and 3/ help users interacting with the abstract machine.

We developed a proof-of-concept, mcGDB, as a Python extension of GDB, the de-
bugger of the GNU project.

In this deliverable, we extend programming-model centric debugging and MCGDB

1In the rest of this report, we use OpenMP to refer to any runtime environment implementing the
standard. For particular cases, we explicitly use the environment name.

5

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

to encompass OpenMP task-based programming model (Chapter 2). We also discuss
in Chapter 3 complementary aspects of mcGDB implementation.
The procedure to retrieve the deliverable source code is described in Annex A.1.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 6/33

Chapter 2

Task Debugging in Cooperation with Temanejo

Temanejo [5] is a task-graph debugging tool for OMPss [3] programming environment
(part of the BSC STARSS family). It offers a visual representation of the application
task graph, as well as different properties of the tasks and data dependencies. It
also allows blocking and unblocking tasks, and stepping the application execution
task-by-task.

The design of this tool is close to what we advocate with programming-model
interactive debugging. However it currently misses one aspect that is crucial from
our point-of-view: it does not offer source-level debugging capabilities.

Indeed, Temanejo works in cooperation with a helper library, Ayudame, that
is running within the task-based runtime. This design helps them capturing and
controlling the programming-model abstract machine, however it does not support
any kind of source-level introspection or interactivity.

After a fruitful meeting with Jose Gracia and Mathias Nachtmann from HLRS
Stuttgart, Germany, we decided to start a cooperation between both tools, so that
mcGDB would offer source-level (language—through GDB—and model) interac-
tive debugging, and Temanejo the visualization engine and part of the model-level
interactivity.

In the following, we introduce OpenMP 4.0 task support, which is the target of
this part of the work. Then we describe Temanejo debugging capabilities, and finally
we detail the interactions that occur between mcGDB and Temanejo.

2.1. OPENMP TASK PROGRAMMING MODEL

OpenMP 4.0 support for task programming is based on data dependencies. Be-
fore this version, OpenMP only supported independent tasks, with no scheduling
constraints. We discussed briefly the mcGDB support for such simple tasks in Sec-
tions 2.2.2 and 3.2.4.

OpenMP 4.0 [2] introduced the ability to specify input and output dependencies
when creating tasks. The dependencies are memory locations that are respectively
read or written by the task. Output dependencies are considered ready when their
generating tasks finish their execution. Respectively, input dependencies blocks the

7

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

task execution their writer task have completed their execution.
The creation of dependent tasks looks as follows:

#pragma omp task depend(in: i,j) depend(out:i,j)
update_1(&i, &j);

#pragma omp task depend(in: i) depend(out:i)
update_2a(&i);

#pragma omp task depend(in: j) depend(out:j)
update_2b(&j);

Here, functions update_2a and update_2b will not be executed until update_1 has
completed, however they may be executed in parallel. In Appendix A.2 we reproduced
the sample code we use to test Temanejo and mcGDB task support.

2.2. TEMANEJO TASK DEBUGGER

Temanejo’s main window is presented in Fig. 2.2.1. The graph plotted correspond
to the execution of the source-code in Appendix A.2.

We can see that the tasks (the nodes) have different colors. As per the legend on the
left-hand side, this corresponds to their debugging state: created, running or finished.
Node margin color and shape have their default value. The data dependencies (the
links between the nodes) are colored according to the name of the variable on which
the dependency is set. The arcs are (implicitly) oriented, the upper node has an
output dependency on the variable, the lower one has an input dependency.

Figure 2.2.1: Temanejo task-graph visualization

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 8/33

CHAPTER 2. TASK DEBUGGING IN COOPERATION WITH TEMANEJO

2.2.1 Property Mechanism

Since the refactoring of its version 2.0, Temanejo is agnostic of the underlying runtime.
To that purpose, the information about the execution state was abstracted away into
a property-based system. Tasks and dependencies must have a unique identifier, and
dependencies must have inbound and outbound tasks. Then, any other information
related to a task or a dependency is stored as a key-value property.

This abstract mechanism is very convenient for our purpose, as for instance
the variable name (varname) of dependency was not available in Temanejo native
execution. But once mcGDB could capture this information, it was straightforward
to inform Temanejo about it.

These properties are listed on Temanejo side-bar. Task properties allow users to
control the inner and outer colors and the shape of the graph nodes. Dependency
properties allow users to control the color of the graph edges.

2.2.2 Task Execution Control

Natively, Temanejo lets users block the execution of a specific task, with a left click
on a node. Internally, Temanejo transmits the order to Ayudame, which blocks (with
an infinite loop) the task execution until a release order. Temanejo can also “step
forward” the execution, that is, let n tasks start their execution. The value of n is 1 for
a single step and 10 for a fast-forward.

2.2.3 Ayudame Helper Library

One strength of Temanejo native operation model is the Ayudame library, loaded
inside OMPss runtime. Ayudame is the operational counter-part of Temanejo: it
collects the different information directly from the runtime and transmits them
to Temanejo. It also receives Temanejo requests (only task blocking so far) and
implement them.

Ayudame itself is runtime independent: its interface is generic, so it can be inter-
connected to any task runtime. But its packaging also provides a OMPss/Mercurium
compiler instrumentation library that tells the compiler where and how to insert the
relevant calls to Ayudame inside OMPss/Nanox runtime.

As of today, there is only a weak collaboration between Ayudame and mcGDB:
we implemented an OMP capture back-end that relies on Ayudame to capture and
control OMPss tasks. As OMPss is not a target runtime for the DEMA project, we
only developed this support as a proof of concept. This preliminary support shows
that, for task debugging, we can defer the actual instrumentation part to Ayudame. If
tomorrow Ayudame supports new runtime systems, they will be supported for free in
mcGDB1.

1Again, this only applies to the task debugging support, not the rest of what what presented earlier.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 9/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

2.3. INTERACTIONS BETWEEN TEMANEJO AND MCGDB

Fig. 2.3.1 presents an overview of the cooperation architecture between mcGDB
and Temanejo. In this workflow, mcGDB and this application can be executed in a
remote system, such as an embedded board or a cluster front-end, whereas Temanejo
GUI remains on the workstation. Temanejo opens a network sockets, and on request,
mcGDB connects to it and feeds Temanejo with the graph structure and sequence
diagram updates. mcGDB also listen on this socket for Temanejo requests.

Figure 2.3.1: Cooperation between mcGDB and Temanejo/Ayudame

2.3.1 Ayudame preload

In Fig. 2.3.1, we can see an Ayudame stub within mcGDB. This stub is Ayudame
communication module, whose core is written in C++ but also exported in Python
through a swig binding. This module allows us to communicate with Temanejo
through an implementation-independent interface, which is better for the portability
over future Temanejo/Ayudame releases.

Originally, we intended to connect Ayudame with the Ayudame-stub running in
mcGDB, to capture Ayudame execution knowledge: mcGDB was supposed to act as
a proxy between Ayudame and Temanejo, and capture on-the-fly the information
required to build its internal representation.

This communication link has been dismissed because of its inefficiency. Indeed,
the socket link is by nature asynchronous, and in our context, the execution of
mcGDB code blocks the application execution, and inversely. Hence, that induces
a significant delay between the happening of event and its handling into mcGDB.
This delay is not acceptable for us, as it means that the debugger representation is
not always in sync with the execution state. To counter this problem, we deactivated
the socket communication in Ayudame and replaced it with a non-operation. And
with a breakpoint on Ayudame event handler (ayu_event function), we capture
synchronously the information that would have been transmitted over the socket
link.

McGDB can also use Ayudame preloaded library blocking capabilities: during

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 10/33

CHAPTER 2. TASK DEBUGGING IN COOPERATION WITH TEMANEJO

the initialization of the library, we capture the setup of the blocking and unblocking
functions (they are part of the TCA interface, that abstracts away these runtime-
dependent functionalities). By calling these functions from mcGDB, we let Ayudame
decide how to implement the task blocking and unblocking.

One benefit of this design is that the runtime-dependent function could mark
the task as “non-schedulable” within the task scheduler, and hence the task blocking
would not affect the execution parallelism. This is however, as of today, not the current
implementation, which relies on an infinite loop. This is equivalent in terms of result
to our implementation—introduced in Section 2.1.3#Thread blocked function.

2.3.2 mcGDB commands

We introduced different commands in mcGDB to control and interact with Temanejo:

omp temanejo init [+host=localhost] +port=[8888] Setup the socket link commu-
nication between mcGDB and Temanejo. The optional arguments indicate
how to reach Temanejo server. If Temanejo is not listening yet on the port, the
Ayudame stub will loop forever until the socket is available.

Note: Before the init command is ran, mcGDB records the operations required
for Temanejo visualization. Hence, event if the link is setup in the middle of the exe-
cution, Temanejo will still receive and replay all the events that occurred beforehand,
leading to an up-to-date and accurate representation2.

Interaction from Temanejo to mcGDB When mcGDB connects to Temanejo,
it currently displays the following warning:

Please note that Temanejo cannot control *GDB*, only mcGDB.
Manually run ‘omp temanejo jobs run all‘ when needed.

The problem behind this warning is that GDB is not multi-thread safe, though
we can (and must) use Python threads, for instance to listen to Temanejo requests.
These threads can access and modify the Python environment, however they must
not access gdb.* package. This package is mostly implemented in C and directly
accesses GDB internal structures. In practise, any call to this package, or objects
created from it, leads to a segmentation fault.

Hence, a Temanejo request that only affect mcGDB state can be executed auto-
matically. However, a request that involves GDB must be stacked. It will be either
automatically executed (by the main thread) upon execution resume (with an event
callback from GDB), or manually with omp temanejo jobs run all.

A fix for GDB would not be overly hard to implement, but it would imply a C patch
telling readline library to periodically jump into Python environment and execute
the stacked functions (that is equivalent to our run all code).

2The current implementation of this recording is simplistic, a proxy records the function calls to the
communicator-to-be object, and replays them when the communicator is actually instantiated. We did
not study to cost of this recording, which may have to be optimized and/or deactivable.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 11/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

omp temanejo jobs List the jobs currently stacked

omp temanejo jobs run all|<id> Run all or one job

omp temanejo jobs cancel <id> Cancels a job

Debugging

omp temanejo debug [on|off] If on, print on the console the messages sent to Te-
manejo.

omp temanejo debug nop [on|off] If on, message are not actually sent to Temanejo.

omp temanejo debug userdata <data> Send to Temanejo auserdatamessage with
payload MCGDB#<data>.

omp temanejo finish Close the connection to Temanejo.

Ayudame preloaded library

omp ayudame preload updates GDB’s environment to preload Ayudame library in
the application. This command has to be run before the beginning of the
application execution.

2.4. MCGDB+TEMANEJO TASK DEBUGGING

In this section, we introduce the task debugging support we designed in the
context of the cooperation between mcGDB and Temanejo.

2.4.1 Task State and Properties

Description

info task [<id>*] Print the list of the tasks created by the application. If <id>* is
provided, only include task with these ids.

[key]=[value] Filter on the properties to print. Key must start with key and
value must start with value.

+src Print the source-code of the tasks.

+deps Print the dependencies of the tasks (name, address and IDs of the
dependent tasks)

+sched Indicate if the task is not schedulable (see next subsection #Artificial
Debugger Lock Detection).

+internal Also print internal properties (starting with __).

+none Include properties whose value is None.

In Temanejo, task and dependency properties are displayed through node and
edge color, shape and outline, as shown in Fig. 2.2.1.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 12/33

CHAPTER 2. TASK DEBUGGING IN COOPERATION WITH TEMANEJO

Properties set by mcGDB

Task properties:

debug_state State of the task, according to mcGDB. It can be created, running,
finished, but also blocked by the debugger orblocked by dependency
(see Section 2.4.1#Debugging-lock Detection).

executed_by Identifier of the worker that executed this task.

running_on Identifier of the worker that executes the task. If the task has completed,
this property is set to None.

src_lines Format: <filename:start:stop>. Name of the file that defines the task,
and first and last line number of its scope.

Dependency properties:

varname Name of the variable that hold the data dependency.

address Address of the data dependency.

Artificial Debugger Lock Detection

Blocking tasks from the debugger (see Section 2.4.2#Task blocking) leads sooner or
later the execution into a artificial deadlock situation. This a not a real application
deadlock, as it is introduced by the debugger, but nonetheless the execution is not
able to make any further progress. Hence, the debugger can help the user by noticing
this situation and breaking the execution.

We implemented such a mechanism in mcGDB, thanks to its task-graph knowl-
edge: a task can only run if all of its ancestors have completed their execution. Hence,
blocking a task will prevent the execution of all of its descendants.

To take that into account, when the user blocks a task, we change its state
(debug_state) to blocked by the debugger, and set the state of its descendants
to blocked by dependency. In addition to the ordinary state created, running
and finished, we can decide if the task is schedulable or not (see info task
+sched to query it). If no task is schedulable (and they are not all finished), then we
have an artificial deadlock. To automatically stop the debugger when this happens,
each time a task becomes unschedulable, we check if there is one schedulable. If not,
we break the execution.

A particular situation that did not happen when testing on a desktop computer,
but did occurred on Juno board LITTLE/slow cores (see Section 3.1) is when the
graph is not immediately fully constructed. In this case, if the user blocks a task, and
later a new task is connected to its descendants, then the state of this task must be
changed to blocked by dependency. Otherwise, the debugger will see this task as
schedulable and will not detect that the artificial deadlock situation occured.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 13/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

2.4.2 Task Execution Control

Catchpoints These commands are used to stop the execution at different points
related to task creations and executions.

omp next task Continues the execution until the next task creation.

omp task break all|next [n]|<id>* Catchpoint on the beginning of the execution of
all the tasks, the next one, the nth next one, or only for tasks with IDs in <id>*

In Temanejo:

omp task break next is equivalent to the button Next

omp task break next 10 is equivalent to the button Fast-forward.

omp task break <id> is equivalent to a right-click on a task, then break.

Task blocking This command blocks the execution of the tasks. The actual imple-
mentation of this command varies between the runtime. As of today, it means that
upon the beginning of task execution, the underlying thread will start an infinite loop
(see Section 2.1.3#Thread blocked function).

omp task block <id>* Blocks the tasks with IDs in <id>*.

omp task unblock <id>* Unblocks the tasks with IDs in <id>*.

In Temanejo:

omp task block <id> is equivalent to a right-click on a task, then block.

omp task unblock <id> is equivalent to a right-click on a blocked task, thenunblock.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 14/33

Chapter 3

Discussions about mcGDB Implementation

In this last chapter of the report, we go though mcGDB implementation and experi-
mentation details. We first discuss the portability question, regarding the OpenMP
runtime but also the CPU architecture. Then, we present an implementation tech-
nique we used to decouple the core module (representation) from the user-facing
interface (interaction package). We finally discuss the micro-benchmarking we
carried out to measure the execution overhead introduced by mcGDB.

3.1. SUPPORTING MULTIPLE OPENMP ENVIRONMENT

One goal of mcGDB framework and architecture is to facilitate the porting from
one model/environment to another. In the case of OpenMP, this means porting from
one runtime implementation to another.

Multi-runtime support To highlight this ability, we developed our debugger sup-
port for both GNU GOMP [4] and Intel OpenMP [1]. As of today, both runtime have
the same support in mcGDB. We also have a preliminary support for OMPss [3] and
Ayudame targets, but further engineering work would be required to finalize their
support.

The distinction between the runtime implementations are concealed in the
capture package. To support a new implementation, one have to figure out how to
capture the right execution events (new parallel zone, beginning of a task execution,
etc.) and call the representation API accordingly. The libmcgdb library would
have to be updated as well.

The ongoing work on OMPT and OMPD APIs [6] (OpenMP Trace and Debugging
APIs, respectively) appears as a promising opportunity to have a full implementation-
independent mcGDB support for OpenMP. These standardized interfaces would
allow tracers and debuggers to receive notifications upon various OpenMP execution
events. These events are very close to what is required for model-centric debugging,
which means that mcGDB could catch them to build its internal representation.
Hence, it would become implementation agnostic and would support any compliant
OpenMP implementation.

15

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Multi-architecture support As part of the embedded aspect of DEMA, we tested
our debugger support on an ARM Juno board, featuring a big.little processor.

Since its early developments, mcGDB implementation is target independent.
The few aspects that are architecture dependent (such as data types and parameter
accesses) are abstracted away behind a generic interface (mcgdb.toolbox.target.
my_archi), plus GDB internal mechanisms (frame specifications, type printing, etc.).
Hence, the main part of the ARM porting consisted in adding a simple architecture
support for ARM aarch64.

Another problem showed up during the tests, due to the fact that arm-gdb cannot
modify global variables. This is a debugger implementation limitation unrelated to
mcGDB. It finally did not affect our support, as these global variables (in libmcgdb)
were not actually used, but only implemented prospectively (to let the threads know
their GDB thread id).

3.2. ASPECT-ORIENTED PROGRAMMING FOR interaction MODULES

As we mentioned in the previous section, the design of mcGDB puts an impor-
tant focus on modularity: it should easily support new architecture and runtime
implementation. This this modularity also concerns the user-interaction package.
Tomorrow, our command-line functionalities may be replaced by a graphical version,
or simply removed. Hence, these functionalities must be decoupled as much as
possible from the core modules.

To support this modularity, we introduced in mcGDB an aspect-oriented pro-
gramming interface. This interface is specific to our needs, and hence we wrote it
from scratch.

Description

Aspect-oriented programming is a programming technique that allows adding be-
havior (code) to an existing function without modifying the function itself. Here is an
example is pseudo-code:

function test()
// do something

end test;

@aspect.before(test)
function before_test()

// do something before test
end before_test;

@aspect.after(test)
function after_test()

// do something after test
end after_test;

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 16/33

CHAPTER 3. DISCUSSIONS ABOUT MCGDB IMPLEMENTATION

Function test is the main function (in mcGDB, it is part of the representation
module). Aspect functions before_test and after_test are respectively executed
before and after function test (in mcGDB they are in the interaction package).

Implementation in mcGDB

In mcGDB, aspect-oriented support is implemented in module mcgdb.toolbox.
aspect. It relies on Python (2 and 3) introspection capabilities.

In mcGDB OpenMP representation module, where the core functionalities are,
we define the classes that can receive aspects by setting mcgdb.toolbox.aspect.
Tracker as a super-class (Python support multiple inheritance so it does not alter
the original design):

class Job(aspect.Tracker): ...
class ParallelJob(Job): ...

def start_working(self, worker): ...
def stop_working(self, worker): ...

In mcGDB OpenMP interaction modules, the aspects are defined with the
following syntax:

def step_aspects(Tracks):
@Tracks(representation.ParallelJob)
class ParallelJobTracker:

def __init__(this): ...
def start_working(this): ...
def stop_working(this): ...

aspect.register("step", step_aspects)

By default, aspects are called after the main function execution, except if the
aspect function defines a before keyword. Setting before and after aspects may not
be possible in the current implementation.

Inside the aspect function, the first argument (named this in the example, to
contrast with Python usual self) holds the information about the main function:

this.self holds a reference to the actual class instance (a ParallelJob instance here)

this.args.* contains the named arguments of the actual function (for instance this.
args.worker in start_working function), except for the class constructor
__init__ were we cannot have access to the name of the arguments.

this.meth_args contains the ordered list of the function arguments (useful only in
the class constructor)

We believe that this implementation technique is particularly convenient for
the implementation of the interaction modules, as it leads to cleanly decoupled
user-facing functionalities. Adding a new functionality does not impact the rest of
the implementation, and hence it can be activated or deactivated at will.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 17/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

3.3. PERFORMANCE MICRO-BENCHMARKING

As part of our developments for the DEMA project, we wrote a micro-benchmark
and non-regression testing framework. We conducted preliminary experimentation
to measure the impact of GDB breakpoints and mcGDB event capture (i.e., break-
points and Python code). The results are presented in Fig. 3.3.1.

To measure the debugger intrusion in the execution time, we first wrote a simple C
code that loops over a given task (in its algorithmic definition). This task is a function
call for GDB testing, and OpenMP parallel zone for mcGDB OpenMP testing. The
C code measures the time taken for the loop execution, and divides it by the loop
counter to get the average time of single iteration.

Second, we implemented an automatic GDB execution framework, controlled
by Python scripts. These scripts set breakpoints, watchpoints, etc. according to the
requirements, then run the code and parse the execution time computer by the C
code.

The average of a single iteration is what is plotted in Fig.3.3.1. The loop counter
was set to 1000, and the experiment was repeated 10 times in a row.

3.3.1 Native GDB with Python Code

The chart in Fig.3.3.1#Native GDB and Python presents the time it takes to carry out
some of GDB basic operations:

Nominal time Time of the usleep(t) syscall. The sleep time t is always excluded.

Breakpoint command Time of an internal GDB breakpoint set through the command-
line interface (break <loc>; command silent continue;).

HW Watchpoint command Like above, but with a memory breakpoint.

Python Breakpoint parameters ii Internal breakpoint with a Python callback. The
last digits indicate (as a binary flag—01 for 1, 10 for 2, 11 for 1 and 2) what
parameters were read:

• 1 is a function parameter: int(gdb.parse_and_eval("it")

• 2 is a local variable of the caller function:
int(gdb.newest_frame().older().read_var("i").

Function Breakpoint This is a basic mcGDB breakpoint, with some more Python
code involved that Python Breakpoint parameters 00.

Finish Breakpoint This is another basic mcGDB breakpoint that stops before and
after a function call.1

From this chart, we can draw the following conclusions:

1Note that this is not a gdb.FinishBreakpoint, which currently takes a lot of time, 120.000us. We
will have to investigate what happens.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 18/33

CHAPTER 3. DISCUSSIONS ABOUT MCGDB IMPLEMENTATION

Figure 3.3.1: Micro-benchmarking of debugger intrusion in the execution time.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 19/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

• Hardware watchpoints are faster than breakpoints. This makes sense as for
breakpoints, GDB needs to switch to the debuggee context multiple times
to single-step over the breakpointed instruction, whereas this is (certainly)
automatic with hardware-assisted watchpoints.

• Python breakpoints are faster than GDB command-line breakpoints. This may
be due to a repeated parsing of the breakpoint command.

• Reading values from the debuggee’s current frame takes 100us. Reading it from
the frame above adds 50us, which maybe the time required to query the OS
about the stack registers value. 100us is also close to the difference of time
between a breakpoint and a watchpoint.

• A mcGDB Python FunctionBreakpoint takes as much time as GDB break-
point command. The additional time compared with the simple python break-
point (parameters 00) certainly comes from Python interpretation cost.

• A mcGDB FinishBreakpoint involves 2 breakpoints, so it is logical that it
takes twice as much time as a FunctionBreakpoint.

3.3.2 mcGDB OpenMP

The charts in Fig.3.3.1#OpenMP present the time it takes to pass the different OpenMP
constructs. The chart #OpenMP/Nominal time is the time without debugger instruc-
tion, and the chart #OpenMP/mcGDB is the time with mcGDB event capture. The
experimentation ran on a quad-core processor, so with 4 OpenMP threads/workers.

• The sections zone has three sections.

• The line single task stands for a task spawn from within a single construct.

• The figure indicated in the legend is the number of breakpoints that where hit
(before+after). We did not include in that count the 16+5 breakpoints required
to handle the new threads and parallel zones.

From this chart, we can draw the following conclusions:

• The master construct is the fastest to pass, but also the simplest: the master
threads (get_id() == 0) executes the block, the other continues.

• The barrier construct is also fast. There are 4 breakpoints that come from
the preloaded library. They could have been disabled to improve the perfor-
mance, as they are only useful in interactive mode. The 4+4 other breakpoints
correspond to the hit of the barrier function and its return.

• The construct critical and single (because of the barrier) also have these
spurious stops in the current benchmark.

• We cannot explain why the single+task construct is faster than the single
construct. Maybe a different handling inside OpenMP. The 3 additional break-
points correspond to the task creation (1) and execution (1+1).

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 20/33

CHAPTER 3. DISCUSSIONS ABOUT MCGDB IMPLEMENTATION

The chart 3.3.1#All together combines the chars #Native GDB and Python and
#OpenMP/mcGDB.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 21/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 22/33

Chapter 4

Conclusion

In this document, we detailed the deliverable D3 of Nano2017/DEMA sub- project
1 on Interactive Debugging. The source code corresponding to this deliverable is
accessible with the procedure described in Annex A.1.

We introduced the new support of mcGDB for OpenMP task-based programming.
This support consists of task-based execution representation and control improve-
ments, in cooperation with Temanejo graphical debugger. We also discussed import
implementation details of mcGDB, related to the support of multiple OpenMP en-
vironments and CPU architectures; the separation of cross-cutting concerns (user
interaction and execution representing) through aspect-oriented programming, and
the first steps of mcGDB micro-benchmarking.

In the next months of the DEMA project, we will start the investigation on the
possibilities of OpenMP application profiling controlled by an interactive model-
centric debugger (Deliverables D2 and D4). We will continue and extend the work on
mcGDB testing and benchmarking to validate its efficiency. We plan to the KaStORS
OpenMP benchmark suite [8] to validate mcGDB implementation and measure its
execution intrusion.

23

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 24/33

References

[1] Intel OpenMP Runtime. https://www.openmprtl.org/.

[2] OpenMP 4.0 standard. http://www.openmp.org/mp-documents/OpenMP4.0.
0.pdf.

[3] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesus Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. OmpSs: A proposal for programming hetero-
geneous multi-core architectures. Parallel Processing Letters, 21(02), 2011.

[4] Free Software Foundation (FSF). GOMP – An OpenMP implementation for GCC.
https://gcc.gnu.org/projects/gomp/.

[5] Rainer Keller, Steffen Brinkmann, José Gracia, and Christoph Niethammer. Te-
manejo: Debugging of thread-based task-parallel programs in starss. In Tools for
High Performance Computing 2011. Springer Berlin Heidelberg, 2012.

[6] OpenMP Tools Working Group. OpenMP Technical Report 2 on the OMPT Inter-
face. Technical report, OpenMP, 2014.

[7] Kevin Pouget. Programming-Model Centric Debugging for Multicore Embedded
Systems. PhD thesis, Université de Grenoble, École Doctorale MSTII, feb 2014.

[8] Philippe Virouleau, Pierrick BRUNET, François Broquedis, Nathalie Furmento,
Samuel Thibault, Olivier Aumage, and Thierry Gautier. Evaluation of OpenMP
Dependent Tasks with the KASTORS Benchmark Suite. In 10th International
Workshop on OpenMP, IWOMP2014, 10th International Workshop on OpenMP,
IWOMP2014, Salvador, Brazil, France, September 2014. Springer.

25

https://www.openmprtl.org/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://gcc.gnu.org/projects/gomp/

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 26/33

Chapter A

Appendix

27

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

A.1. ACCESS TO SOURCE-CODE

A.1.1 Download

mcGDB

• http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.
tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git

OMP Seqdiag • http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/
seqdiag.tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/seqdiag.git

• Refer to upstream/readme to install

– http://blockdiag.com/en/seqdiag/

Temanejo

• http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.
tgz

• gitclonegit+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_
mcgdb.git

• Refer to upstream/readme to install

– http://www.hlrs.de/organization/av/spmt/research/temanejo/

Requirements

pip install colorlog pysigset enum34 pyparsing networkx

• Logging

– Colorlog (recommended)
https://pypi.python.org/pypi/colorlog

• GDB internal thread safety:

– Pysigset (recommended)
https://pypi.python.org/pypi/pysigset/

• Task/OpenMP

– Enum34 (Python2 only)
https://pypi.python.org/pypi/enum34

– pyparsing
https://pypi.python.org/pypi/pyparsing

– Graph (one package–not currently in use)

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 28/33

http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.tgz
git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/seqdiag.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/seqdiag.tgz
git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/seqdiag.git
http://blockdiag.com/en/seqdiag/
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.tgz
git clone git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_mcgdb.git
git clone git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_mcgdb.git
http://www.hlrs.de/organization/av/spmt/research/temanejo/
https://pypi.python.org/pypi/colorlog
https://pypi.python.org/pypi/pysigset/
https://pypi.python.org/pypi/enum34
https://pypi.python.org/pypi/pyparsing

APPENDIX A. APPENDIX

* Networkx (optional)
https://pypi.python.org/pypi/networkx/

* PyGraphViz (optional)
https://pypi.python.org/pypi/pygraphviz

– Sequence Diagram

* Seqdiag (mcGDB version)

• Toolbox/Target

– Access/ssh

* Pushy
https://pypi.python.org/pypi/pushy

• Documentation

– Rendering

* Sphinx
https://pypi.python.org/pypi/Sphinx

* Sphinx RTD theme (optional)
https://pypi.python.org/pypi/sphinx_rtd_theme

A.1.2 Installation

Our developments were done with GDB 7.10 and Python 2.7.10. GDB supports
Python 2 and Python 3, and our support should work with both versions, except when
communicating with Temanejo/Ayudame, which mandates Python2 usage. Python 3
usability was tested on version 3.4 and 3.5.

Load mcGDB from GDB

Put in .gdbinit:

python
sys.path.append("/path/to/Python")
try:

import mcgdb
#mcgdb.initialize()
mcgdb.initialize_by_name()

except Exception as e:
import traceback
print ("Couldn’t load Model-Centric Debugging: %s" % e)
traceback.print_exc()

end

Put in your $PATH:

ln -s $(which gdb) mcgdb
ln -s mcgdb mcgdb-omp

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 29/33

https://pypi.python.org/pypi/networkx/
https://pypi.python.org/pypi/pygraphviz
https://pypi.python.org/pypi/pushy
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx_rtd_theme

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

Convenience with GDB/mcGDB

Add these lines to your .gdbinit:

almost mandatory:

set height 0
set width 0

for convenience:

set breakpoint pending on
set print pretty
set confirm off

for debugging

set python print-stack full

A.1.3 Compile libmcgdb-omp

cd $MCGDB_PATH
cd model/task/environment/openmp/capture/preload
make # generates __binaries__/libmcgdb_omp.preload.so

A.1.4 OpenMP environment

Our OpenMP support works with GNU Gomp and Intel OpenMP.

GNU Gomp

Our GNU Gomp support was tested with a standard gcc 5.2.0 (archlinux x86 build),
with comes with libgomp 1.0.0.

Intel OpenMP

Intel OpenMP should be compiled with debugging symbols (and OMPT support).
Here is the procedure:

mkdir -p intel_omp/{build,install}
cd intel_omp
INTEL_OMP_HOME=$(pwd)
url checked 17/12/2015
wget https://www.openmprtl.org/sites/default/files/libomp_20150701_oss.tgz
tar xvf libomp_20150701_oss.tgz

cd build

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 30/33

APPENDIX A. APPENDIX

cmake -DCMAKE_C_FLAGS="-g -O0" \
-DCMAKE_INSTALL_PREFIX:PATH=$INTEL_OMP_HOME/install \
-DLIBOMP_OMPT_SUPPORT=true \
$INTEL_OMP_HOME/libomp_oss/

-- LIBOMP: OpenMP Version -- 41
-- LIBOMP: OMPT-support -- true
-- LIBOMP: Build -- 20150701
-- LIBOMP: Use predefined linker flags -- true

make && make install

export LD_LIBRARY_PATH=$INTEL_OMP_HOME/install/lib

compile OMP application
path/to/clang -fopenmp -g $FILENAME

check that $INTEL_OMP_HOME/install/lib/libiomp5.so is actually used
ldd a.out | grep libiomp5.so

tested with clang 3.5.0
clang --version
clang version 3.5.0
(https://github.com/clang-omp/clang.git a5dbd16db2515a5b2fa82c7dd416d370968646b1)
(https://github.com/clang-omp/llvm 1c313aa94183e765c450be6bda3913e22abc3073)
Target: x86_64-unknown-linux-gnu

A.1.5 Test, Benchmark and Documentation

Test and benchmark mcGDB

With sys.path correctly configured, run:

import mcgdb
mcgdb.run_tests()

or from command-line:

python3 -c ’import mcgdb; mcgdb.run_tests()’

Generate mcGDB documentation

cd /path/to/mcgdb
cd documentation
make html
or
make -f /path/to/mcgdb/documentation/Makefile html

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 31/33

NANO2017/DEMA Délivrable D3 : Intégration d’OpenMP 4.0

A.1.6 Ayudame/Temanejo

We use a development version of Ayudame/Temanejo, hence it build system is not
finalized, and it does not support yet out-of-tree building. Temanejo only works with
Python2, and furthermore, Ayudame requires that GDB runs with Python2. Other-
wise, an ImportError will be raised, indicating that the symbol PyInstance_Type
cannot be found in $PYTHONPATH/ayudame/_ayu_socket.so.

install qt4/qtwebkit (qmake, libQtWebKit.so.4)
install pyside (Resource Compiler for Qt version 4.8.7)
install pyside-uic (PySide User Interface Compiler version 0.2.15,
running on PySide 1.2.4.)
install swig (3.0.7)
install graphviz (2.38.0 (20140413.2041))
sudo pip2 install networkx pygraphviz

cd temanejo_mcgdb
TEMANEJO_HOME=$(pwd)
install autoconf and automake
autoreconf -fiv

mkdir install
./configure --prefix=$(pwd)/install
cd ./Temanejo2/src/temanejo2/temanejo2/view/ \

&& pyside-uic mainwindow.ui -o mainwindow.py \
&& cd -

make && make install

cd $TEMANEJO_HOME
cp -rv Temanejo2/src/temanejo2/resources/mcgdb-seqdiag/ \

install/lib/python2.7/site-packages/temanejo2/resources/

cd $PYTHONPATH
ln -s $TEMANEJO_HOME/install/lib/python2.7/site-packages/ayudame
ln -s $TEMANEJO_HOME/install/lib/python2.7/site-packages/temanejo2

PATH=$TEMANEJO_HOME/install/bin/:$PATH

and run Temanejo2
Temanejo2 -p 8888

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 32/33

APPENDIX A. APPENDIX

A.2. OPENMP TASK EXAMPLE

int main (void) {
int i=0; int j=0; int k=0;
int x=0; int y=0; int z=0;

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task depend(in: i,j,k) depend(out:i,j,k)
foo1(&i, &j, &k);

#pragma omp task depend(in:x,y,z) depend(out:x,y,z)
foo1(&x, &y, &z);

#pragma omp task depend(in:i,y,z) depend(out:i,y,z)
foo1(&i, &y, &z);

#pragma omp task depend(in:x,j,k) depend(out:x,j,k)
foo1(&x, &j, &k);

for (i = 0; i < 2; ++i){
#pragma omp task depend(in: i) depend(out: i)

foo(&i);
#pragma omp task depend(in: j) depend(out: j)

foo(&j);
#pragma omp task depend(in: k) depend(out: k)

foo(&k);
#pragma omp task depend(in: x) depend(out: x)

foo(&x);
#pragma omp task depend(in: y) depend(out: y)

foo(&y);
#pragma omp task depend(in: z) depend(out: z)

foo(&z);
}

#pragma omp task depend(in:i,j,k) depend(out:i,j,k)
foo1(&i, &j, &k);

#pragma omp task depend(in:x,y,z) depend(out:x,y,z)
foo1(&x, &y, &z);

#pragma omp task depend(in:i,y,z) depend(out:i,y,z)
foo1(&i, &y, &z);

#pragma omp task depend(in: x,j,k) depend(out: x,j,k)
foo1(&x, &j, &k);

}
}

#pragma omp taskwait

return 0;
}

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 19, 2016
Page: 33/33

	Introduction
	Task Debugging in Cooperation with Temanejo
	OpenMP Task Programming Model
	Temanejo Task Debugger
	Property Mechanism
	Task Execution Control
	Ayudame Helper Library

	Interactions between Temanejo and mcGDB
	Ayudame preload
	mcGDB commands

	mcGDB+Temanejo Task Debugging
	Task State and Properties
	Task Execution Control

	Discussions about mcGDB Implementation
	Supporting Multiple OpenMP Environment
	Aspect-Oriented Programming for interaction Modules
	Performance Micro-Benchmarking
	Native GDB with Python Code
	mcGDB OpenMP

	Conclusion
	References
	Appendix
	Access to Source-Code
	Download
	Installation
	Compile libmcgdb-omp
	OpenMP environment
	Test, Benchmark and Documentation
	Ayudame/Temanejo

	OpenMP Task Example

